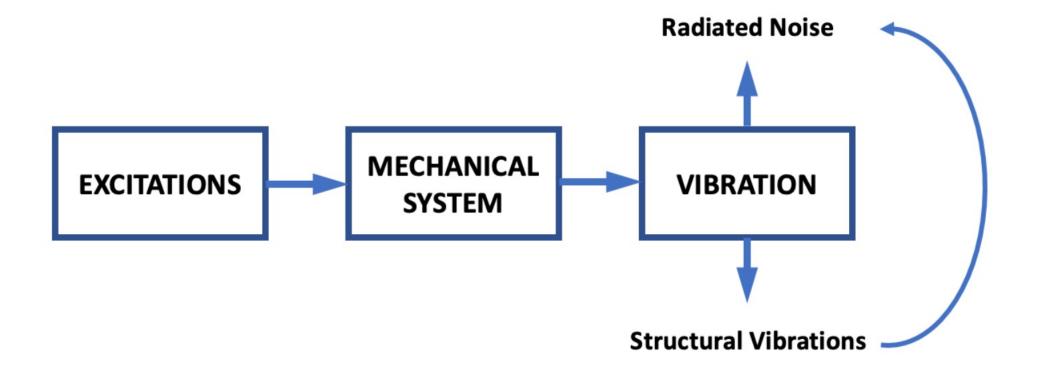
Vehicle Dynamics and Simulation

Drivetrain Dynamics

Dr B Mason

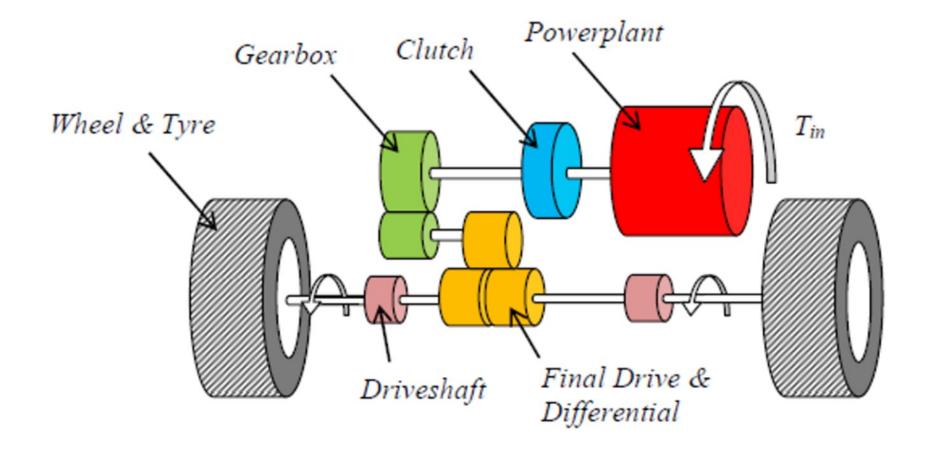
Note

• The test is on Tuesday at 2pm

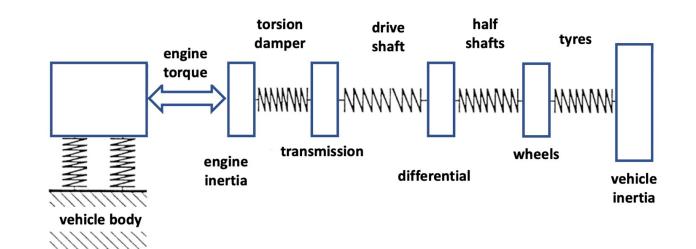


Lecture Overview

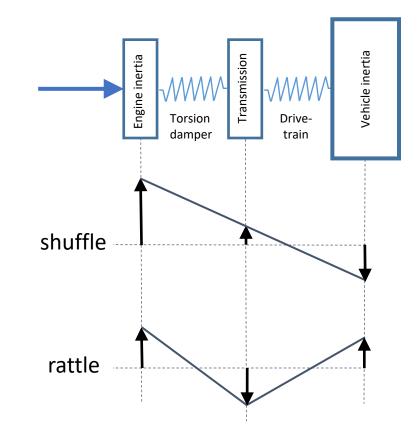
- Drivetrain as a vibrational system
- Torsional drivetrain model
- Excitation sources
- Driveline Components
- Vibration analysis

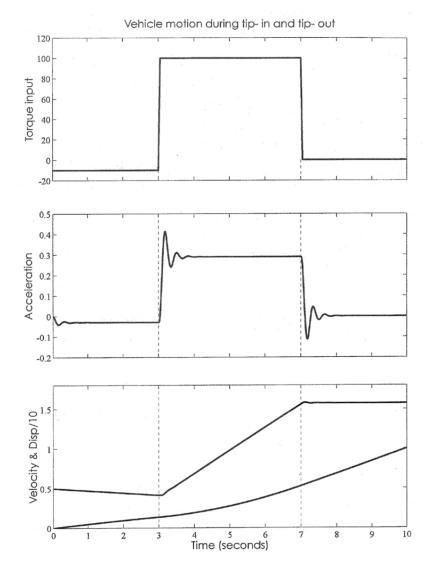


The Drivetrain System

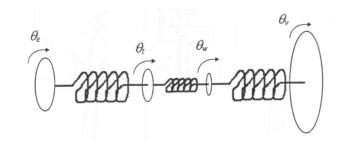

The Drivetrain System

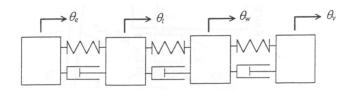
The Drivetrain System

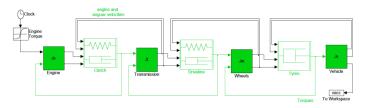

- The drivetrain can be represented as a number of springs and masses
- Each mass is isolated as a point-mass
- These types of models are known as lumped parameter models
- Control of vibration is achieved by;
 - Reducing excitation
 - Changing stiffness and damping (resonance frequencies)


The simplest useful model

- Three main modes;
 - Shuffle (4-12 Hz)
 - Rattle (40 80 Hz)
 - Rigid body rotation
- And others;
 - Boom (interior compartment)
 - Judder (low frequency on clutch engagement)
 - Clonk (lash in driveline)

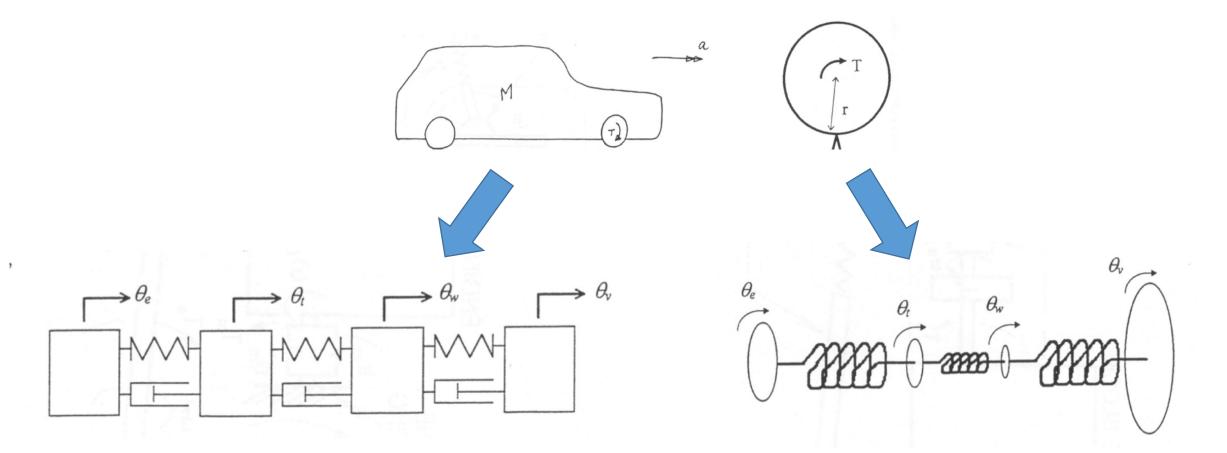

Response to step input

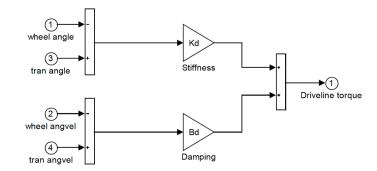


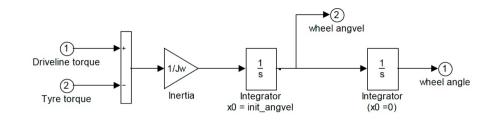


More advanced models

- Three, four, six, ..., twenty! mass models
 - Complexity driven by requirements
- Can add masses to suit
- Other components in the drivetrain are important
 - Clutch
 - Differential
 - Actuators and related controls





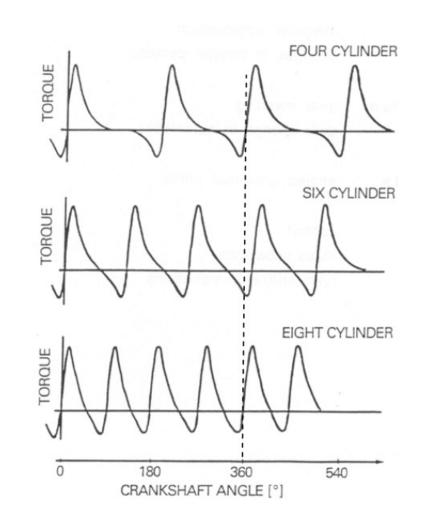

Rotation or Translation?

Standardised (Simulink) components

Spring-damper

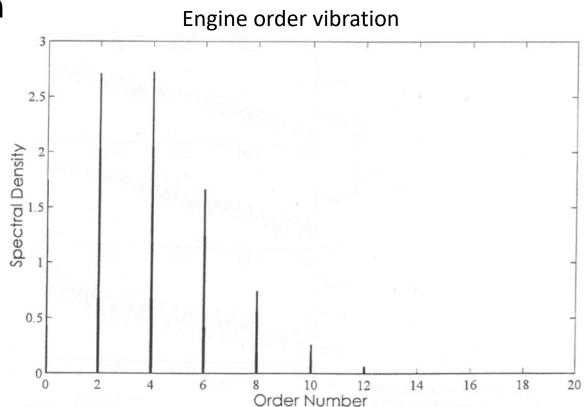
Mass

Sources of excitation


- Main sources of excitation
 - Combustion
 - Step-in and step-out
 - Electric machine
 - HEV transitions
 - Cylinder deactivation
- Transmission
 - Gear meshing
 - Ratio changes
- Driveshaft
 - Universal joints

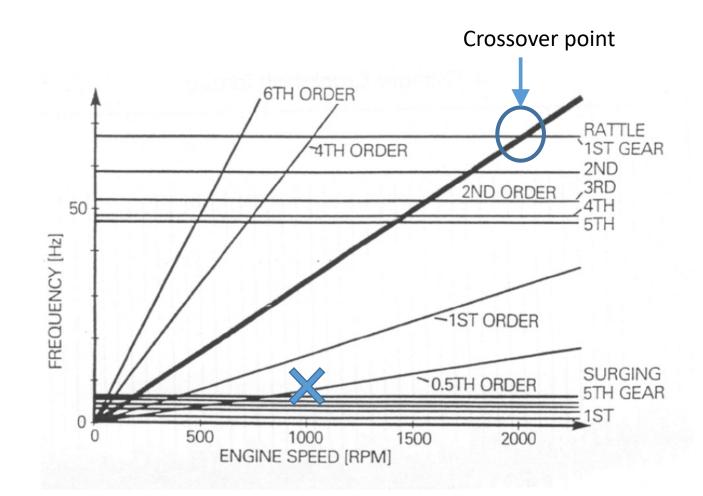
- Tyres and wheels
 - Runout
 - Mass imbalance
 - Stiffness variations

Excitation - Combustion


- Firing of engine causes torque pulses
- Varies in frequency
 - Number of cylinders
 - Engine speed
- Other events
 - Valve opening and closing (x1 per rotation)
 - Injector opening and closing (x1 per cycle)

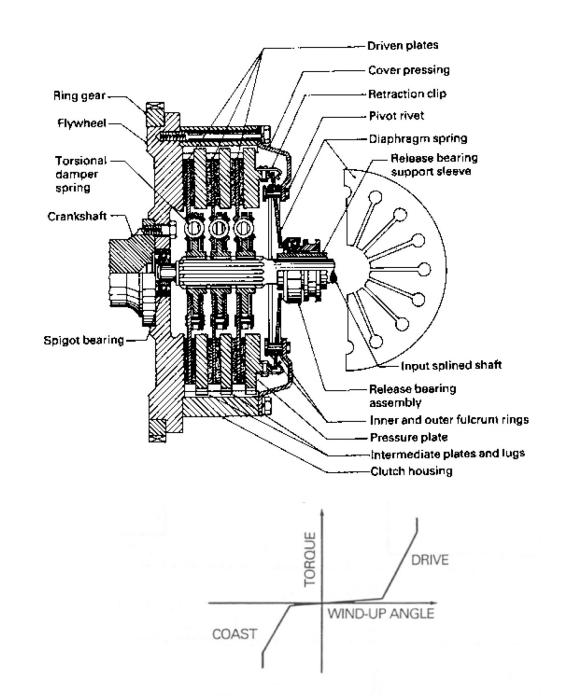
Excitation - Combustion

- Spectral analysis (FFT) to look at frequency content of measured response
- Can normalise spectral analysis result with rotational speed
 - Shows how response relates to engine speed
- Can also create interaction plot / Campbell diagram to show response relative to excitation (engine).



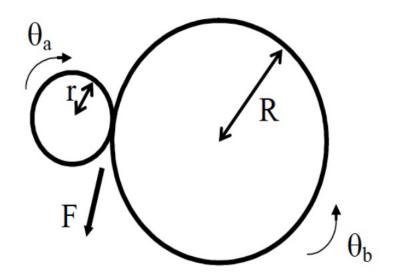
Each peak in the diagram above represents a frequency described in terms of the order i.e. frequency/rotational frequency

Campbell Diagram


- Order is frequency / rotational frequency
- 1st order is 1:1 mapping
 e.g. at 1000 rpm = 1000 /
 60 cycles per second (Hz).
- Where the 'order' crosses the 'resonance' line is the point of max vibration.

Torsion Damper

- Used as first line of defence against excitation in the driveline.
- Different physical arrangements.
- Nonlinear spring rate with some damping.

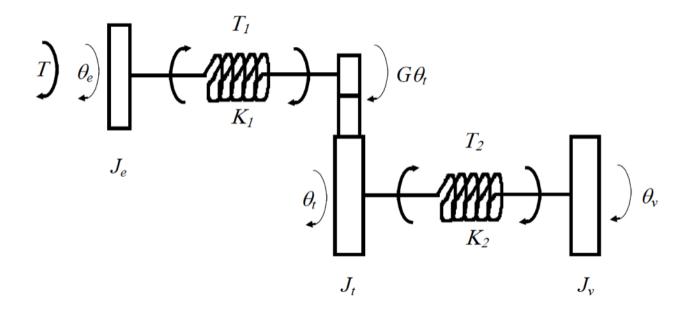

Gearbox

- Can be modelled as a single pair (and 'switched').
- Output torque is calculated (*T_a* is input torque);

$$T_b = GT_a$$

• With the gear ratio, G given by;

$$G=R/r$$



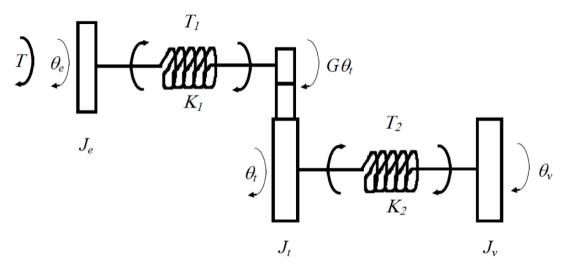
Simple Drivetrain Model

- Three inertias
- Compliantly connected by rotational springs
- Engine inertia accel; $J_e \ddot{ heta}_e = T T_1$
- Transmission inertia accel;
 - $J_t \ddot{\theta}_t = GT_1 T_2$
- Vehicle inertia accel;

$$J_v \ddot{ heta}_v = T_2$$

Simple Drivetrain Model

 Torque transmitted between engine and transmission;

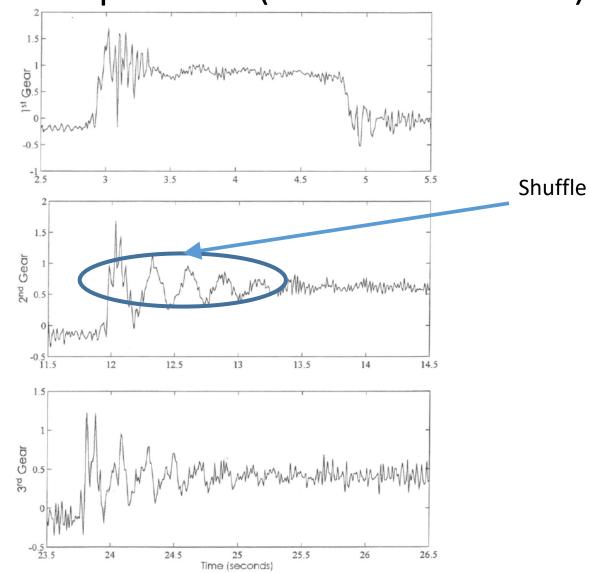

 $T_1 = K_1(heta_e - G heta_t)$

• Torque transmitted between transmission and vehicle;

$$T_2 = K_2(heta_t - heta_v)$$

So that;

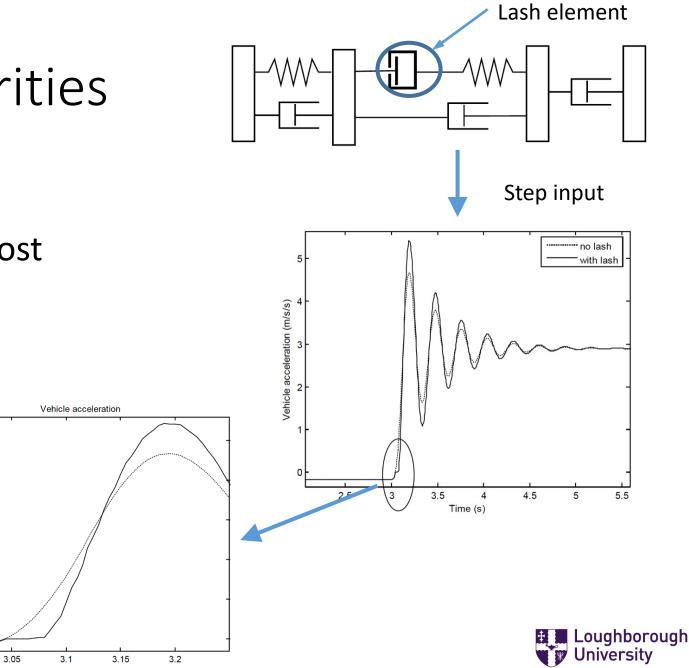
$$egin{aligned} &J_e\ddot{ heta}_e = T - K_1\left(heta_e - G heta_t
ight) \ &J_t\ddot{ heta}_t = GK_1\left(heta_e - G heta_t
ight) - K_2\left(heta_t - heta_v
ight) \ &J_v\ddot{ heta}_v = K_2\left(heta_t - heta_v
ight) \end{aligned}$$

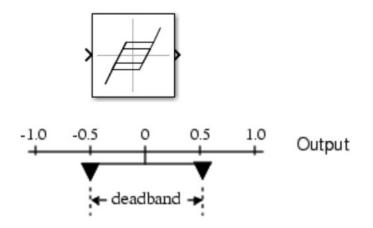


• A less messy formulation is (see notes for derivation);

$$egin{aligned} &J_{e}^{*}\ddot{ heta}_{e}^{*}=GT-K_{1}^{*}\left(heta_{e}^{*}- heta_{t}
ight)\ &J_{t}\ddot{ heta}_{t}=K_{1}\left(heta_{e}^{*}- heta_{t}
ight)-K_{2}\left(heta_{t}- heta_{v}
ight)\ &J_{v}\ddot{ heta}_{v}=K_{2}\left(heta_{t}- heta_{v}
ight) \end{aligned}$$

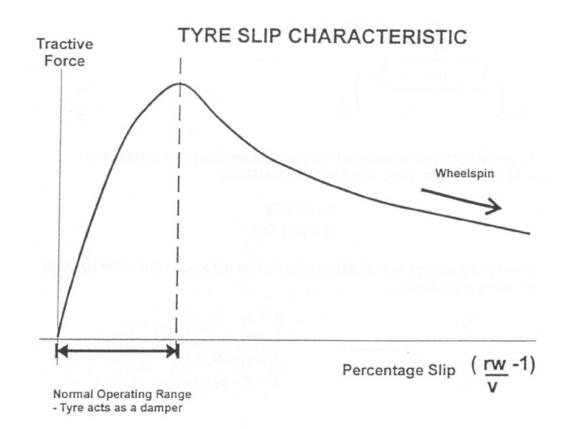
Measured Response (Mondeo 1.8I)




Driveline Nonlinearities

- There are many sources of nonlinearity.
- Typically include 'lash' as most significant.

3


 Lash element available in Simulink

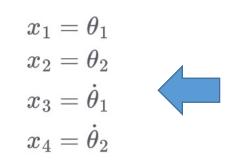
A Simple Tyre Model

- Longitudinal force in acceleration is generated through contact patch.
- The amount of force generated is proportional to 'slip' i.e. velocity difference between tyre (translation) and vehicle (translation).
- Sharply rises, reaches a peak then falls. Stiction vs viscous friction.

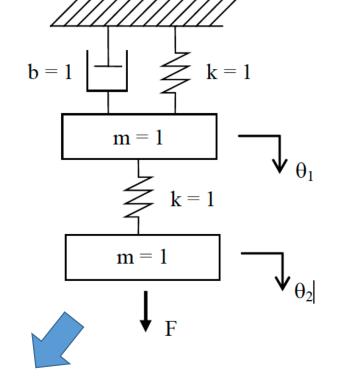
Draw schematic

Vibration Analysis

Create state matrix


$$egin{bmatrix} \dot{x}_1\ \dot{x}_2\ \dot{x}_3\ \dot{x}_4\end{bmatrix} = egin{bmatrix} 0 & 0 & 1 & 0\ 0 & 0 & 0 & 1\ -2 & 1 & -1 & 0\ 1 & -1 & 0 & 0\end{bmatrix} egin{bmatrix} x_1\ x_2\ x_3\ x_4\end{bmatrix} + egin{bmatrix} 0\ 0\ 0\ 1\end{bmatrix} \mathbf{F} \quad egin{bmatrix} \mathbf{y} = C\mathbf{x} + D\mathbf{u}\ \mathbf{x} = A\mathbf{x} + B\mathbf{u} \end{aligned}$$

 $\widehat{}$


Substitute state variables

$$egin{aligned} \dot{x}_1 &= x_3 \ \dot{x}_2 &= x_4 \ \dot{x}_3 &= x_2 - 2x_1 - x_3 \ \dot{x}_4 &= F - x_2 + x_1 \end{aligned}$$

Define states

Determine system equations

$$F-l(heta_2- heta_1)=l\ddot{ heta}_2$$

 $l(heta_2- heta_1)-l heta_1-l\dot{ heta}_1=l\ddot{ heta}_1$

Vibration Analysis – Modal analysis

• Remember that;

$$heta(t) = \mathrm{Re}\left\{\mathbf{u}_1 e^{\lambda_1 t} + \mathbf{u}_2 e^{\lambda_2 t} + \ldots + \mathbf{u}_n e^{\lambda_n t}
ight\}$$

• Where each term is;

 $\mathbf{u}_1 e^{\lambda_1 t} = \mathbf{u}_1 e^{(\sigma + j\omega)t} = \mathbf{u}_1 e^{\sigma t} e^{j\omega t} = \mathbf{u}_1 e^{\sigma t} (\cos(\omega t) + i\sin(\omega t))$

• For a single component;

$$heta(t) = \mathbf{u}_1 e^{\lambda_1 t}$$
 and $\dot{ heta}(t) = \lambda_1 \mathbf{u}_1 e^{\lambda_1 t}$

• So that;

$$\mathbf{x}(t) = \mathbf{v}_1 e^{\lambda_1 t}$$
 where; $\mathbf{v}_1 = egin{bmatrix} \mathbf{u}_1 \ \lambda_1 \mathbf{u}_1 \end{bmatrix}$

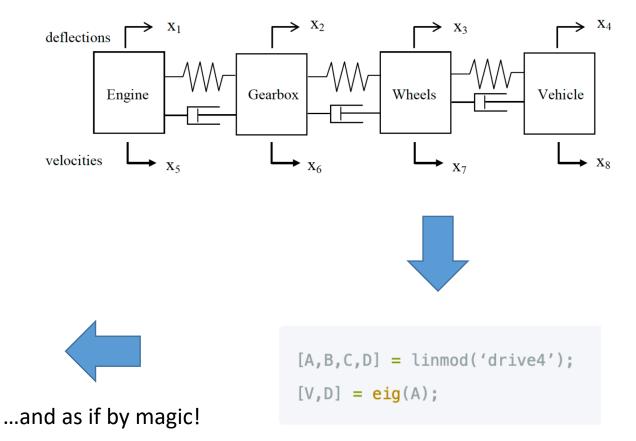
Previously covered in Section 6

Vibration Analysis – Modal analysis

• For free vibration;

$$\lambda_1 \mathbf{v}_1 e^{\lambda_1 t} = A \mathbf{v}_1 e^{\lambda_1 t}$$

• So that;


 $\lambda_1 \mathbf{v}_1 = A \mathbf{v}_1$

• Which means that λ_1 is a eigenvalue of A and v_1 is the corresponding eigenvector – from the definition of what an eigenvalue is.

 For the spring-mass-damper system previously (given parameter values);

 $egin{aligned} \lambda_1 &= -0.35 + 1.5\mathrm{j} \ \lambda_2 &= -0.35 - 1.5\mathrm{j} \ \lambda_3 &= -0.15 + 0.63\mathrm{j} \ \lambda_4 &= -0.15 - 0.63\mathrm{j} \end{aligned}$

	$\lambda_1 = \lambda_2 = \lambda_2 = \lambda_1 = \lambda_2 $		$\lambda_3 =$	$\lambda_4 =$	
	0	-779.5	-86.9+366.4i	-86.9-366.4i	
x 1	0	0.0000	-0.0000 - 0.0001i	-0.0000 + 0.0001i	
x2	0	-0.0000	0.0006 + 0.0026i	0.0006 - 0.0026i	
x3	0	-0.0013	0.0000 - 0.0000i	0.0000 + 0.0000i	
x4	1.000	0.0000	-0.0000 - 0.0000i	-0.0000 + 0.0000i	
x5	0	-0.0000	0.0269 + 0.0007i	0.0269 - 0.0007i	
x6	0	0.0129	-0.9996	-0.9996	
x7	0	0.9998	0.0059 + 0.0116i	0.0059 - 0.0116i	
x8	0	-0.0150	0.0003 - 0.0003i	0.0003 + 0.0003i	

	$\lambda_5 =$	$\lambda_6 =$	$\lambda_7 =$	$\lambda_8 =$	
	-2.40 + 22.26i	-2.40- 22.26i	-1.4676e-006	1.4676e-006	
x1	-0.0035 - 0.0329i	-0.0035 - 0.0329i	0.5000	-0.5000	
x2	-0.0039 - 0.0284i	-0.0039 - 0.0284i	0.5000	-0.5000	
x3	-0.0068 + 0.0040i	-0.0068 + 0.0040i	0.5000	-0.5000	
x4	0.0005 + 0.0038i	0.0005 + 0.0038i	0.5000	-0.5000	
x5	0.7403	0.7403	-0.0000	-0.0000	
x6	0.6412 - 0.0186i	0.6412 - 0.0186i	-0.0000	-0.0000	
x7	-0.0720 - 0.1618i	-0.0720 - 0.1618i	-0.0000	-0.0000	
x8	-0.0848 + 0.0025i	-0.0848 + 0.0025i	-0.0000	-0.0000	

Matlab Example Output

D =

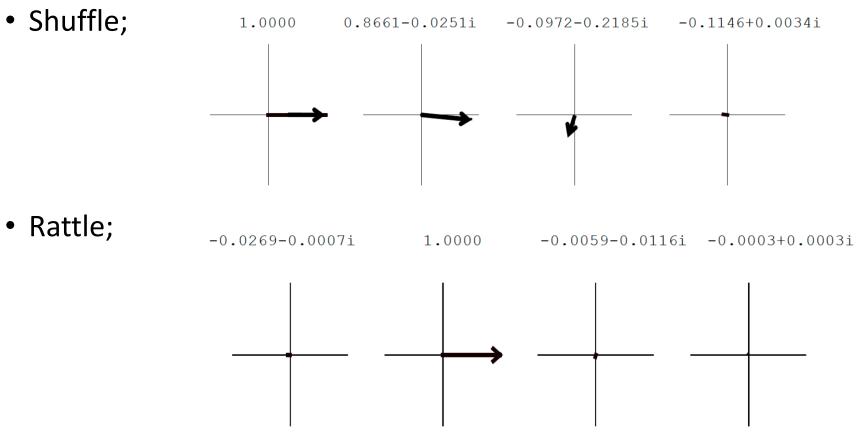
[V,D] = eig(A)

1.0e+02 *

0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	-5.4924 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	-0.8696 + 3.6644i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	-0.8696 - 3.6644i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	-0.0332 + 0.2219i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	-0.0332 - 0.2219i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	0.0000 + 0.0000i	-0.0000 + 0.0000i

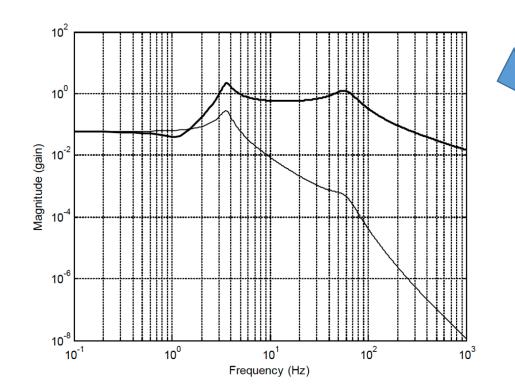
V =

0.0000 + 0.0000i	0.0000 + 0.0000i	-0.0000 - 0.0001i	-0.0000 + 0.0001i	-0.0048 - 0.0322i	-0.0048 + 0.0322i	-0.5000 + 0.0000i	-0.5000 + 0.0000i
0.0000 + 0.0000i	0.0001 + 0.0000i	0.0006 + 0.0026i	0.0006 — 0.0026i	-0.0053 - 0.0278i	-0.0053 + 0.0278i	-0.5000 + 0.0000i	-0.5000 + 0.0000i
0.0000 + 0.0000i	-0.0307 + 0.0000i	-0.9995 + 0.0000i	-0.9995 + 0.0000i	0.6340 - 0.0265i	0.6340 + 0.0265i	-0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	-0.0001 + 0.0000i	0.0269 + 0.0007i	0.0269 - 0.0007i	0.7306 + 0.0000i	0.7306 + 0.0000i	-0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0018 + 0.0000i	0.0000 - 0.0000i	0.0000 + 0.0000i	-0.0096 + 0.0041i	-0.0096 - 0.0041i	-0.5000 + 0.0000i	-0.5000 + 0.0000i
1.0000 + 0.0000i	-0.0000 + 0.0000i	-0.0000 - 0.0000i	-0.0000 + 0.0000i	0.0007 + 0.0037i	0.0007 - 0.0037i	-0.5000 + 0.0000i	-0.5000 + 0.0000i
0.0000 + 0.0000i	-0.9994 + 0.0000i	0.0104 + 0.0139i	0.0104 - 0.0139i	-0.0592 - 0.2260i	-0.0592 + 0.2260i	-0.0000 + 0.0000i	0.0000 + 0.0000i
0.0000 + 0.0000i	0.0151 + 0.0000i	0.0002 - 0.0003i	0.0002 + 0.0003i	-0.0839 + 0.0035i	-0.0839 - 0.0035i	-0.0000 + 0.0000i	0.0000 + 0.0000i


- Normalising (as in previous example)
 - Shuffle;

•

0.7403	/ 0.7403	= 1.000	0
0.6412 - 0.0186i	/ 0.7403	= 0.866	51 - 0.0251i
-0.0720 - 0.1618i	/ 0.7403	= -0.097	2 - 0.2185i
-0.0848 + 0.0025i	/ 0.7403	= -0.114	6 + 0.0034i
Rattle:			


0.0269 + 0.0007i	/ -0.9996	=	-0.0269 - 0.0007i
-0.9996	/ -0.9996	=	1.0000
0.0059 + 0.0116i	/ -0.9996	=	-0.0059 - 0.0116i
0.0003 - 0.0003i	/ -0.9996	=	-0.0003 + 0.0003i

• And plotting

• Bode plot to show frequency response between input torque, vehicle and transmission acceleration.

[A,B,C,D] = linmod('drive4'); sys = ss(A,B,C,D); f = [0.1:0.1:1000]'; [mag,phase] = bode(sys,f*2*pi); mag = squeeze(mag)'; loglog(f,mag); grid on;

